
Preventing Bandwidth Abuse at the Router through
Sending Rate Estimate-based Active Queue

Management
Venkatesh Ramaswamy, Leticia Cuéllar, Stephan Eidenbenz and Nicolas Hengartner

Computers and Computational Sciences
Los Alamos National Laboratory

PO Box 1663, MS-M997
Los Alamos, NM-87545

Email: {vramaswa,leticia,eidenben,nickh}@lanl.gov

Abstract— We propose a rigorous mathematical interpretation
of a novel family of Active Queue Management schemes, called
Sending Rate Estimate based Queue Management (SREQM)
scheme, that aims to provide fair bandwidth allocation to all
the flows in a router by estimating the flow sending rates, while
maintaining only minimal per-flow state information. We propose
an optimized implementation of SREQM, called Fair Sending
Rate Estimate based Queue Management (FSREQM) scheme,
and show through comparative simulation that FRESQM is
the only scheme among those tested that successfully prevents
bandwidth abuse while maintaining high link utilization.

I. INTRODUCTION

The Internet has grown exponentially over the past 25 years
from a small experimental network to a platform that changed
the way we communicate and do business. While from the end
user’s perspective, the Internet is a shared resource, competi-
tion and commercialization have lead to resource abuse. There
are a lot of forms of resource abuse, and the most important
ones are over usage of link bandwidth and router buffer. We
call a situation in which a user can steal all the available
bandwidth, starving other users, as “bandwidth abuse”.

Bandwidth abuse in the Internet can happen intentionally or
unintentionally based on the nature of traffic source. Traffic
sources in the Internet are broadly classified as responsive or
unresponsive sources based on their reaction to congestion
in the network [1]. A source that employs a protocol that
respond to congestion by reducing the offered load is called
a responsive source. The most common example is a source
employing TCP [2]. On the other hand a source with a
protocol that ignores congestion by simply maintaining or even
increasing its load is termed a non-responsive source, the most
common example of which is a source using UDP [2].

The most appropriate response, socially, to congestion,
for each source is to reduce the offered load to match
the available capacity of the network. Application designers
usually choose protocols that best balance quality of service
(QoS) requirements of the application and the overall network
performance. Applications like file transfer usually adopt a
TCP-friendly protocol because integrity of the data is required,
while applications such as VoIP usually adopt a non-responsive

protocol as delay requirements are high for these applications.
While some applications are non-responsive because they have
to be, some others are unnecessarily non-responsive.

With the exponential growth of the Internet, there are many
instances where the sources can be non-responsive. Even
though most of the variations of the TCP implement conges-
tion control, their response to congestion varies. Users can
adopt aggressive settings to get more bandwidth. An example
would be to use a modified form of TCP with larger initial
window and window opening constants. Also, with a large
number of short flows, the aggregate traffic may become non-
responsive even though each of these short flows is responsive
to congestion [3]. Moreover, many growing applications such
as packet video and packet audio employ the UDP protocol,
which does not implement congestion control. In short, the
non-responsive behavior is growing in the Internet.

These non-responsive sources can monopolize network
bandwidth and starve the “congestion friendly” flows. Without
implementing a centralized congestion control algorithm and
forcing the users to abide by that algorithm, it is not possible
to guarantee that they will not act in a selfish manner [4].
For large networks such as the Internet, however, forcing all
the end users to adopt a centralized algorithm is not feasible.
Local congestion control schemes are the only viable approach
to prevent bandwidth abuse.

Some congestion control approaches at the router have
implicit capability to prevent bandwidth abuse. Congestion
control approaches at the router can be mainly classified in
to two categories: user-centric congestion control algorithms
and router-centric congestion control algorithms [5]. In the
user-centric approach the output port of the router maintains
a separate queue for packets from each input port. Scheduling
algorithms employing user centric approach, of which the
Generalized Processor Sharing (GPS), and the Weighted Fair
Queueing (WFQ) algorithm are the most generic ones, require
the buffer at each output be divided into separate queues to
hold the packets from each separate flow [1]. Packets from
these queues are then scheduled in a specific way, typically
on a round-robin basis. Since packets from each flow are sepa-

U.S. Government work not protected by U.S. Copyright

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUN 2007 2. REPORT TYPE

3. DATES COVERED
 00-00-2007 to 00-00-2007

4. TITLE AND SUBTITLE
Preventing Bandwidth Abuse at the Router through Sending Rate
Estimate-based Active Queue Management

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Los Alamos National Laboratory,Computers and Computational
Sciences,PO Box 1663, MS-M997,Los Alamos,NM,87545

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM002055. Proceedings of the 2007 IEEE International Conference of Communications (ICC
2007) Held in Glasgow, Scotland on June 24-28, 2007. U.S. Government or Federal Rights License

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

6

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

rated from one another, a misbehaving flow cannot degrade the
quality of a legitimate flow. However, these approaches usually
require complicated per flow state information, thus making
it too expensive to be widely deployed when the number of
flows is large or when the switching speeds are very high [6].
Simply put, the user-centric approach does not scale. Also this
approach is unnecessarily complex because most of the flows
in the Internet are short flows usually termed as “web mice”
[7]. Moreover, having a separate queue for each flow would
reduce statistical multiplexing of buffer space [8].

A scheme that tries to approximate WFQ is Stochastic Fair
Queueing (SFQ) [9], but it still requires around 2000 queues in
a typical network to approach WFQ’s performance [9], [5]. A
recent scheme called Core Stateless Fair Queueing [4] tries to
reduce the state information the routers have to carry in order
to prevent misbehavior and provide fairness among flows. The
core router’s design complexity is reduced considerably, but
the total design is still complex because the algorithm requires
to extract some information from the packet headers in a
different way than the current way of extracting information
from the packets.

A router centric approach on the other hand has a very
simple design because it does not need to maintain full state
information for each flow. Each output port will have a single
FIFO queue to hold packets coming from each of the flows.
Droptail queueing scheme and the Random Early Drop (RED)
algorithm are two of the most citied queue management algo-
rithms using the router centric approach [5]. Queue manage-
ment schemes that dynamically signal congestion to sources
are usually referred to as Active Queue Management (AQM)
schemes. The objective of this work is to design congestion
control schemes with the following desired properties:

• The congestion control scheme should not rely on the
cooperation of the users. The scheme should assume that
there will be some sources which behave selfishly.

• The scheme should have minimum complexity; it should
have minimum per flow state information, and should be
scalable. The scheme should use the available resources
(link and buffer) efficiently.

• The scheme should be capable of imposing penalty to
misbehaving sources. It should be able to protect the
“good” flows from the “bad” flows.

We introduce a class of queue management schemes called
Sending Rate Estimate based Queue Management (SREQM)
schemes in [1], which introduces a paradigm shift in the packet
dropping mechanism. SREQM bases the packet dropping
decision on both the estimated sending rate of flows and the
queue length instead of just the average queue length. In
this work, we focus on presenting a rigorous mathematical
interpretation of SREQM along with the introduction of a
simple, highly efficient light-weight algorithm called Fair
Sending Rate Estimate based Queue Management (FSREQM)
scheme. FSREQM can punish misbehaving flows and guard
well behaved flows, guaranteeing a certain QoS among flows.

The rest of the paper continues as follows. In the next
section we present a rigorous analytic approach to estimate the

relative sending rate of flows. Development of a light-weight
queue management scheme called Fair Sending Rate based
Queue Management scheme based on the relative sending rate
estimate follows. Some simulation results to demonstrate the
effectiveness of the scheme in preventing bandwidth abuse is
presented in Section IV. With a section on conclusion and
some future directions, we conclude this paper.

II. CONCEPTUAL DESIGN OF RELATIVE SENDING RATE

ESTIMATOR

Most of the queue management schemes at the router either
cannot effectively prevent malicious behavior from sources or
cannot scale. We believe that the key to prevent malicious
behavior is to base the packet dropping decision from flows
on the characteristics of each individual traffic flow. In this
section, we present a light-weight approach to estimate the
relative sending rate of flows with high accuracy.

Assume that time is divided into discrete time slots and that
there is always one packet in each time slot. Each flow has
a unique identifier given by the four tuple : (source address,
source port, destination address, destination port). Because the
sending rate of a flow is a non-stationary process, we may
want to use a moving average of the proportion of packets
from each flow to estimate the instantaneous sending rate of
a flow. To compute this estimate, we need to keep in memory
a history of all the packets that arrived during a time window,
say T time slots. Denote χ̃j(t) to be the indicator function
that the packet at time t is from flow j. That is

χ̃j(t) =
{

1 if the packet at time slot t is from flow j
0 otherwise.

Let Ãj(t1, t2) be the proportion of packets from flow j in
[t1, t2]. For any time interval of length T , say [t + 1 − T, t],
we can write,

Ãj(t + 1 − T, t) =
1
T

t∑
l=t+1−T

χ̃j(l). (1)

The proportion of from flow j in the time window T can
also be recursively written as

Ãj(t + 1 − T, t) = Ãj(t − T, t − 1)

+
1
T

χ̃j(t) − 1
T

χ̃j(t − T). (2)

The above equation says that in order to compute Ãj(t +
1−T, t), we add the information of the packet that arrived at
time t to Ãj(t − T, t − 1) and delete the information of the
oldest packet in the window, which is the packet that arrived
at time slot (t − T). The idea is illustrated in Figure 1. In
Figure 1 a packet from flow i is indicated as i. The window
size and the number of flows is assumed to be seven and three
respectively. At time slot 8, a packet from flow 3 arrives and
Ã1(2, 8) can be computed as

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

1 1 2 3 1 3 1

1 2 3 1 3 1 3

2 3 1 3 1 3 1

1 2 3 4 5 6 7 8 9 Time

Ã1(3, 9) = 3/7

Ã1(2, 8) = 3/7

Ã1(1, 7) = 4/7

Fig. 1. An example to compute Ã1(·)

1 1 2 3 2 1 2

1 1 3 2 1 2 1

1 1 3 2 2 1 2

1 2 3 4 5 6 7 8 9

1 1 3 2 1 2 1

1 1 3 2 2 1 2

Time

S̃1(7) = 3/7

S̃1(8) = 4/7

S̃1(9) = 3/7

S̃1(10) = 4/7

S̃1(11) = 3/7

Fig. 2. An example to compute S̃1(·)

Ã1(2, 8) = Ã1(1, 7) +
1
7
χ̃1(8) − 1

7
χ̃1(1) = 3/7 (3)

The above approach requires us to keep track of all the
packets that arrived during the last T time slots. That is we
need to know the order of last T packet arrivals.

Alternatively, to reduce the computational and memory
requirements, we can delete any one of the T packets in the
history instead of deleting the oldest packet from history. This
only requires us to know the number of packets from each
flow in the last T time slots instead of the entire history. If
we did that, our estimate would take a form as given below.

S̃j(t) = S̃j(t − 1) +
1
T

χ̃j(t) − 1
T

Θ̃j(t), (4)

where S̃j(t) is a new estimate of the relative sending rate of
flow j at time slot t and Θ̃j(t) is given as follows

Θ̃j(t) =

1 if the randomly picked packet from the
T packets in the history belonged to flow j

0 otherwise.

Figure 2 illustrates this idea. As before, we assume 3 flows
and the window size as seven. At time slot 8, a packet from
flow 1 arrives, but instead of deleting the packet that arrived
at time slot one, we randomly pick a time slot and delete the
packet that arrived at that time slot. In this specific example,
the randomly picked packet turned out to be the one that
arrived at time slot three. The packet that arrived at time slot
three was from flow 2, and therefore Θ̃1(8) = 0. Note that
there is always T packets in history at any time. At time slot
8, we can estimate the sending rate of flow 1 as

S̃1(8) = S̃1(7) +
1
7
χ̃1(8) − 1

7
Θ̃1(8)

= 3/7 + 1/7 − 0/7 = 4/7. (5)

Note: At t only packets 1 and 3 contribute to S̃j(.)

t2 + G2

t3 + G3

t1 + G1t1

t2

t3

Packet 1

Packet 2

Packet 3

t1 2 3 Time

Fig. 3. An alternate way to compute S̃j(t)

To elucidate the distribution of S̃j(t), imagine that the pack-
ets from flow j is a realization from a Bernoulli process with
parameter Pj . We can show that S̃j(t) is an inhomogeneous
birth death process that has a Binomial stationary distribution
with parameters (T, Pj). As a result, the expected value in the

long run is limt→∞ E
[
S̃j(t)

]
= Pj . In other words, S̃j(t) is

essentially an unbiased estimate for the relative frequency of
packets from each flow.

By construction of S̃j(t), the deletion of packets from mem-
ory is random. Therefore, the same arrival history can lead to
different realizations of S̃j(t). Ideally, we want to remove this
randomization by taking the conditional expectation of S̃j(t)
given the arrival process. That is

Hj(t) = E
[
S̃j(t)|history

]
. (6)

Note that

E [Hj(t)] = E
[
E

[
S̃j(t)|history

]]
= E

[
S̃j(t)

]
= Pj ,

and therefore, it can be shown that

E
[
(Hj(t) − Pj)

2
]
≤ E

[(
S̃j(t) − Pj

)2
]

. (7)

In other words Hj(·) is a tighter estimate for Pj than S̃j(·),
making Hj(·) a better estimate for Pj than S̃j(.).

In order to compute the R.H.S. of Equation (6), we derive an
alternate representation for S̃j(t) by noting that the probability
of picking a packet from T packets in history is 1/T , and the
number of time slots required before a packet is deleted from
history is geometrically distributed with parameter 1/T . We
can compute S̃j(t) alternatively as follows. When a packet
arrives, stamp the packet with a number which is the sum
of the time at which it arrives and a number which is drawn
from a geometric distribution with parameter 1/T , which is
represented as Gi for packet i. At time slot t, S̃j(t) is the
proportion of packets from flow j among all the packets whose
stamp exceeds t. Figure 3 illustrates the idea. At time slot t,
we look at all the packets whose life time exceeds t, that
is geometrically distributed with parameter T , and are from
flow j. We then divide that by the total number of packets in
history which is T . Let G̃i be a geometric random variable
with parameter 1

T , S̃j(t) can then be represented as

S̃j(t) =
1
T

∑
l≤t

χ̃j(l)φ̃l(t) (8)

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

where

φ̃l(t) =

1 if
(
G̃l + l

)
≥ t

0 if
(
G̃l + l

)
< t

With the above alternate definition of S̃j(t), we can compute
the R.H.S of Equation (6) as follows

Hj(t) = E
[
S̃j(t)|history

]
=

1
T

∑

l≤t

χ̃j(l)

E

[
φ̃l(t)

]

=
1
T

∑
l≤t

χ̃j(l)
(

1 − 1
T

)t−l

. (9)

From the above equation, it is readily seen that Hj(t) has
a recursive form. Hj(t) can be re-written as

Hj(t) =
(

1 − 1
T

)
Hj(t − 1) +

1
T

χ̃j(t). (10)

Both Ãj(·) and Hj(·) are estimates of the sending rate
of flow j. While Ãj(.) is a moving average, Hj(.) is an
exponential smoother, where the more recent observations are
weighted more than the older observations. Moreover, in Hj(.)
we do not have to keep track of the arrival times of the packet
as we have to do in Ãj(·), and Hj(·) is less variable than
S̃j(·).

These properties make Hj(·) an obvious choice for estimat-
ing the sending rate. Figure 6 illustrates the averaging methods
of both the estimates. It can be shown that

∑
∀j Hj(t) = 1,

which conforms to the fact that Hj(·) is the proportion of the
packets from flow j in the history, and the sum of proportions
from all the flows should be 1.

The assumption that there is always a single packet in a
time-slot is unrealistic. We can easily modify the estimator to
account for multiple packets in a time-slot. Here we give the
modified estimator, without giving the details of its derivation,
which is presented in [1]. Let there be n active flows and each
flow can send a packet in a time slot with a probability p.
Therefore the number of packets in a time-slot is binomially
distributed with parameters (n, p). The modified estimator will
take a form as follows

Hj(t) = Hj(t − 1)
(
1 − np

T

)
+

Ψ̃j(t)
T

, (11)

where

Ψ̃j(t) =

1 if a packet from flow j arrives in the
time-slot t

0 otherwise.

When p = 1
n , we have only one packet in a time slot, which

is the original case we considered. For p = 1
n , (11) becomes,

Hj(t) = Hj(t − 1)
(

1 − 1
T

)
+

Ψ̃j(t)
T

, (12)

which is same as (10). Extension of the estimator to variable
length packets is also straightforward. Suppose the minimum

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600 700 800

S
e
n
d
in

g
 R

a
te

 (
K

b
p
s
)

Time (sec)

Flow 1
Flow 1
Flow 3

Fig. 4. Sending rates of three
flows

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800

Time (sec)

Flow 1
Flow 2
Flow 3

H
j
(t

)

Fig. 5. Estimation of relative
sending rates of flows when
T = 400

Ãj(·) Hj(·)

ttt − T + 1

Fig. 6. Averaging procedure for Ãj(·) and Hj(·)

packet size be m units. When a packet of size l (l > m)
arrives, Hj(.) should be updated as follows

Hj(t + 1) = Hj(t)
(

1 − 1
T

)(� l
m + 1

2 �)

+

(� l
m + 1

2�
)
χ̃j(t)

T
(13)

As an illustration of the effectiveness of the above estimator,
consider three flows as shown in Figure 4. The first flow sends
at a rate of 100Kbps for 300s, but increases its sending rate
to 300Kbps after that. The sending rate of second and third
flows are approximately 200Kbps and 400Kbps respectively.
The relative sending rates of the three flows until 300s
are 0.142

(
100

100+200+400

)
, 0.285

(
200

100+200+400

)
, and 0.571(

400
100+200+400

)
respectively. After 300s, flow 1 changes its

sending rate, which in turn changes the relative sending rate
of all the three flows. The relative sending rate of all the
flows after 300s is 0.333

(
300
900

)
, 0.222

(
200
900

)
, and 0.444

(
400
900

)
respectively. We can clearly see that estimator estimates the
relative rates very well. Also the estimator adapts quickly to
the changes in the sending rate as given by the sudden increase
in the sending rate of the first flow at time = 300s.

In the following two sections we describe an algorithm
called Fair Sending Rate Estimate Based Queue Management
Scheme (FSREQM), which uses the estimator Hj(·) to ensure
fairness among flows.

III. DESIGN OF ALGORITHM TO PREVENT BANDWIDTH

ABUSE

From the previous section we know that Hj(·) estimates
the relative sending rate of flow j. A straightforward approach
to prevent bandwidth abuse is to devise an algorithm which
drops packets from a flow if relative share of that flow exceeds
a certain predetermined value. Let K be the relative fair share

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

of a flow, then the dropping probability will then have a form
given by

Pj(t) =
{

0 Hj(t) ≤ K
1 Hj(t) > K

The relative fair share of each flow changes with changes in
network conditions such as changes in the number of active
flows and changes in the sending rate of active flows. There-
fore, we cannot fix the value of K. We start with an initial
arbitrary value of K and then change K dynamically based on
the level of congestion. We use the instantaneous queue size
as an indicator for the level of congestion. Specifically, when
the queue size goes below a threshold, qmin, we increase K
and when the queue size goes above a threshold, qmax, we
decrease K.

In the relative sending rate estimation procedure, when a
packet arrives, we increment the Hj(t) of the flow from
which the packet arrives by 1

T and then decrement each of
the Hj(t) by Hj(t)

T . The net reduction from all the Hj(t)s
is 1

T

∑
∀j Hj(t) = 1

T . The total reduction is same as total
addition, and therefore

∑
∀j Hj(t) = 1 holds all the time.

To make various quantities integers, we can multiply every-
thing by T . If we do that, the total addition and total reduction
when a packet arrives would be 1 and total number of packets
in history would become T .

In order to prevent updating all the Hj(t) when a packet
arrives, we can pick one of the Hj(t)s with a probability pro-
portional to Hj(t) and then decrement it by the total reduction
from the previous algorithm, which is 1. This method is not
exactly same as the method for computing Hj(·), but on an
average would provide a similar performance as the previous
method, but with much lower computational complexity. We
denote the new estimator by S[i] for flow i.

The entire procedure is depicted in Algorithm 1. The
algorithm maintains a vector, S, with an entry in the vector
for each flow, S[i] being the entry for flow i. When a packet
arrives and if the sum of elements (entries) in the vector is
less than T , then the element in the vector corresponding to
the flow from which the packet arrived is incremented by one.
Instead if if the sum of elements in the vector is greater than
or equal to T , then one of the elements in the vector S is
picked with a probability proportional to the value of that
element. The picked entry is subtracted by one and the entry
in the vector corresponding to the flow from which the packet
arrived is incremented by one (lines 1-6). The amount added
and subtracted are equal and therefore

∑
∀i S[i] = T will be

true in the steady state. If the value of S[i] corresponding to
the flow from which the packet arrived is less than or equal to
K, the packet is added, else the packet is dropped (lines 7-11).
We change the value of K dynamically to reflect the changes
in the characteristics of the incoming traffic as well as the
level of congestion. This change is governed by the current
queue size. If the queue size is larger than some maximum
threshold qmax, which is an indication of congestion, the
value of K is decreased by one. This results in restricting the
sending rate of flows. Likewise, when the current queue size is

below some minimum threshold qmin, which is an indication
of low link utilization, the value of K is decreased by one,
allowing flows to come in at a faster rate. To ensure a smooth
variation of K, the update procedure of K is done once in F
packet arrivals (lines 15-22). The parameter F is called the
congestion parameter and is a representative of how fast the
system responds to congestion.Other possible variations of the
above algorithm are presented in [10].

Algorithm 1 FSREQM :: onPacketArrival(packet P)

1: if (
∑

∀i S[i] ≥ T) then
2: pick an element S[i] from the vector S with a proba-

bility proportional to S[i].
3: S[i]−−;
4: end if
5: x ⇐ flow id of packet P
6: S[x] ⇐ S[x]++

7: if (S[x] ≤ K) then
8: add packet P to the queue
9: else

10: drop packet P
11: end if
12: if (count > 0) then
13: count−−;
14: else
15: if (queue size < qmin) then
16: K++;
17: count ⇐ F ;
18: end if
19: if (queue size > qmax); then
20: K−−;
21: count ⇐ F ;
22: end if
23: end if

FSREQM does not require precise parameter settings. There
are mainly three parameters, the history parameter T , the fair
share parameter K and the congestion parameter F . If T
is small, the variance of the estimator is large and if T is
large then estimator takes a long time to estimate the relative
sending rate correctly. In all our simulations, we assume a
value of T = 400, which is shown to perform well [1].
The initial value assigned to K does not have any serious
impact on the performance as K is changed dynamically based
on the level of congestion. In our simulations we assigned
the initial value of K as

(
T

expected number of flows

)
. The

congestion parameter, F , is the most difficult parameter to set.
The parameter F determines how fast we change the value of
the fair share parameter. For a smooth variation of K, we
chose a value of 200 for the parameter F .

IV. EXPERIMENTAL RESULTS

In order to demonstrate the effectiveness of our scheme in
achieving fairness, we perform several simulation studies using
ns-2 simulator. We conduct two different set of experiments,

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

n2

S1

S2

S3

n16

D1

D2

D3

R1 R2 R3 R4 R5 R6 R7 R8

n1 n3 n5 n7 n9 n11 n13 n15

n4 n6 n8 n10 n12 n14

Fig. 7. Parking Lot Topology

 0

 0.5

 1

 1.5

 2

 2.5

30252015105

Ba
nd

wi
dt

h
(M

bp
s)

Flow ID

Share with RED
Share with CHOKe

Share with FSREQM

Fig. 8. The bandwidth achieved by 32 different flows with RED, CHOKe
and FSREQM. Flows 31 and 32 are UDP flows sending at 1Mbps and 7Mbps
respectively. With FSREQM, the UDP flow sending at 7Mbps is restricted so
that other legitimate flows can get a higher bandwidth.

one using a single congested link to compare FSREQM with
some other popular queue management schemes such as the
RED and the CHOKe, and the second set of experiments to
show that FSREQM achieve an approximate max-min fairness
[1].

In the first set of experiments we assume a dumbbell
topology with a single bottleneck link. There are 32 links
each of bandwidth 10Mbps, while the bottleneck link is of
bandwidth 32Mbps. There are 32 flows of which 30 are TCP
flows and two are UDP flows. One of the UDP flow is a
malicious flow sending at a very high rate of 7Mbps, whereas
the other UDP flow is a legitimate UDP flow sending at a
rate 1Mbps. Figure 8 shows the bandwidth achieved by each
flow with RED, CHOKe and FSREQM. With both RED and
CHOKe, the bandwidth received by the malicious UDP flow
is close to 7Mbps and therefore the bandwidth achieved by
the TCP flows are around 0.75Mbps. With FSREQM, the
malicious UDP flow is restricted and the TCP flows receive a
much higher bandwidth. Also, the link utilization achieved by
FSREQM is very close to 100 %.

In the second case, we consider a parking-lot topology as
shown in Figure 7. The flows between (S1,D1), (S2,D2) and
(S3,D3) are TCP flows and all other flows are UDP flows.
The Table I shows the throughput received by each flow on
the bottleneck link between R7 and R8 The flows between
(n2, n4), (n6, n8), (n10, n12), and (n14, n16) are UDP flows
sending at a rate of 1Mbps. The flows between (n1, n3),
(n5, n7), (n9, n11), and (n13, n15) are also UDP flows, but
sending at a higher rate of 5Mbps. All the bottleneck links
(links between Ri and Rj) have a capacity of 10Mbps, which
means that the first UDP flow is sending at a higher rate
than its fair share and the second UDP flow is sending

TABLE I

MAX-MIN FAIRNESS ACHIEVED BY FSREQM

c

Flow id. Average Max-min
Throughput (Mbps) fair share

1 (TCP) 2.111 2.25
2 (TCP) 2.307 2.25
3 (TCP) 2.249 2.25

4 (UDP - 5Mbps) 2.152 2.25
5 (UDP - 1Mbps) 0.984 1.0

at a rate lower than its fair share. We can see that the
bandwidth allocation by FSERQM is very close to the max-
min bandwidth allocation.

These simulations show that FSREQM can successfully
prevent bandwidth abuse at the router, while keeping the link
utilization very high. For achieving precise max-min fairness
of flows parameter tuning is required. While it is easy to
configure the parameters to achieve max-min fairness, there is
no single set of parameters that will achieve max-min fairness
for all considered cases.

V. CONCLUSION AND FUTURE WORK

In this paper, the problem of preventing bandwidth abuse is
addressed. Rigorous mathematical interpretation of a class of
queue management schemes based on estimating the relative
sending rate of flows is presented and their potential appli-
cation to preventing bandwidth abuse is discussed. A highly
efficient, simple and scalable algorithm called the FSREQM
is presented and its effectiveness in preventing bandwidth
abuse is shown by extensive simulations. Future work involves
testing the system using real traffic traces and evaluating the
performance of the algorithm in real, operational networks.

REFERENCES

[1] V. Ramaswamy, “Efficient Control of Non-Cooperative Traffic Using
Sending Rate Estimate-Based Queue Management Schemes,” Ph.D.
dissertation, The University of Mississippi, 2006.

[2] W. R. Stevens, TCP/IP Illustrated. Addison-Wesley Professional,
December 1993, vol. 1.

[3] Z. Zhao, J. Ametha, D. Swaroop, and A. Reddy, “A Method for
Estimating Non-Responsive Traffic at a Router,” in Proc. of the ACM
Conference on SIGMETRICS’02, June 2002, pp. 274–275.

[4] I. Stoica, S. Shenker, and H. Zhang, “Core-stateless Fair Queueing:
Achieving Approximately Fair Bandwidth Allocation in High Speed
Networks,” in Proc. of ACM SIGCOMM’98, Sep 1998, pp. 118–130.

[5] R. Pan, B. Prabhakar, and K. Psounis, “CHOKe, A Stateless Active
Queue Management Scheme for Approximating Fair Bandwidth Allo-
cation,” in Proc. of IEEE INFOCOM’00, July 2000, pp. 942–951.

[6] R. Pan, L. Breslau, B. Prabhakar, and S. Shenker, “Approximate Fairness
Through Differential Dropping,” ACM SIGCOMM Computer Communi-
cation Review, vol. 33, no. 2, pp. 23–39, 2003.

[7] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker, “On the Charac-
teristics and Origins of Internet Flow Rates,” in Proceedings of ACM
SIGCOMM’02, August 2002, pp. 161–174.

[8] W. Feng, D. Kandlur, D. Saha, and K. Shin, “Stochastic Fair BLUE: A
Queue Management Algorithm for Enforcing Fairness,” in Proceedings
of IEEE INFOCOM’01, April 2001, pp. 1520–1529.

[9] P. McKenny, “Stochastic Fairness Queueing,” in Proceedings of IEEE
INFOCOM’90, June 1990, pp. 733–740.

[10] V. Ramaswamy et al., “Light-Weight Control of Non-Responsive Traffic
with Low Buffer Requirements,” in Proc. of IFIP Networking’07, May
2007.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

	Select a link below
	Return to Main Menu

	Select a link below
	Return to Main Menu

